If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2+5w-14=0
a = 6; b = 5; c = -14;
Δ = b2-4ac
Δ = 52-4·6·(-14)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-19}{2*6}=\frac{-24}{12} =-2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+19}{2*6}=\frac{14}{12} =1+1/6 $
| 19x+22=174 | | 2/3x-3=14 | | 10x=3.91 | | 16z-14z=14 | | 4x/9=-8 | | 8+9u=2(u-11) | | 6y-4=-2y-2 | | 3/4g-9=4(g+1 | | v-7.97=6.1 | | 5x7=52 | | x-3+x-6=11 | | 3/2(6x-24)=18 | | x+87+146=90 | | 4(t+2)=2(7t+7) | | e=50(3) | | (w/5)+7=-3 | | (2x–5)^2=225 | | 5+2x-7=x+4 | | -4+2x+-12=44 | | 5.1-n=-2.4 | | 5y-7=3y+43 | | 2(4x-3)=7x6 | | 21x-5=16^(7x-2.5) | | 2.50+1.00(-x+113)=221 | | -7-21.95=c | | 3x–5=7 | | x+87+146=180 | | 9+9k=-5 | | 6=6v-18 | | Y=-0.04x^2+0.32+2.5 | | x/9+4.6=8.8 | | 12=10x+5x=-18 |